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• Large Language Models (LLMs) 
• What is the problem they solve?
• How do they work?
• Are they “stochastic parrots”? Are they “intelligent”?

• LLMs in education 
• The dream of an AI-based personalized tutor
• Examples
• Concerns 

• Do LLMs actually improve learning performance?
• A recent quantitative study 

Outline



The amazing capabilities of Large Language Models (LLMs)

Source: “Sparks of Artificial General Intelligence: Early experiments with GPT-4” by S. Bubeck et al., 2023



Do LLMs exhibit ”theory of mind” abilities?

Source: “Sparks of Artificial General Intelligence: Early experiments with GPT-4” by S. Bubeck et al., 2023



Sequence to sequence mapping

Source: “The Illustrated Transformer” by J.Allamar



The Sequence Transduction problem
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● Sequence to sequence mapping

● Translation
● Summarization
● Question-Answering
● Speech-to-Text
● Text-to-Speech
● Many other applications...

Source:  Alex Graves (ICML’12 tutorial)

https://www.cs.toronto.edu/~graves/seq_trans_slides.pdf


A (very brief) history of Natural Language Processing 
(NLP)
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● Rule-based methods (1950s-80s): struggled with ambiguity & 
complexity of human language – also not much data to work with

● Statistical methods (till 1990s): n-gram based methods, Hidden 
Markov Models (HMMs), use of Viterbi algorithm, progress in Named 
Entity Recognition tasks

● Corpus linguistics (late 1980s-early 2000s): availability of large 
language datasets from Internet resources – development of methods 
such as tf-idf for info retrieval from documents

● Machine learning (1990s till 2010s): Support Vector Machines 
(SVMs), Bayesian methods, Latent Semantic Analysis (LSA) – but 
required “feature engineering”

● 2003: “A neural probabilistic language model” by Bengio et al.
○ Introduced the power of neural networks and word embeddings in NLP, started 

current era of NLP 



LLMs are (Stochastic) Autoregressive Models

Source: “Role-Play with LLMs” by M.Shanahan et al. 



Fundamental idea behind LLMs: self-attention

Source: “The Illustrated Transformer” by J.Allamar



How are Large Language Models trained?

Source: D.Ofer et al., “The language of proteins: NLP, machine learning & protein sequences”

Source:A, Radford et al., “Improving Language Understanding by Generative Pre-training”



Closing remarks Are LLMs only text prediction machines? – Do they “think”?

● What can go wrong?
○ Input data can be wrong, biased, self-contradictory, etc
○ The super-polymath may not have a unique answer – the question 

(prompt) may be vague – the polymath may not know the answer
○ The LLM may fail to predict accurately what the polymath would say

All human knowledge available 

on the Internet

An imaginary super-polymath that can 

access all human knowledge

LLM predicts what 

the super-polymath would say 



An ability is emergent if it is not present in smaller models but is 
present in larger models.
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Source: “Emergent Abilities of Large Language Models” – Wei et al. 2022



Emergence in Large Language Models?
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Source: https://nsf2026imgallery.skild.com/entries/emergence-complexity-from-the-bottom-up

● “Emergence is when quantitative changes in a system result in qualitative 

changes in behavior.”  (P.Anderson, 1972, “More is different”)
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LLMs in Education



Education: Very remote past, past, and present



Bloom’s 2-sigma problem

“the average tutored student was above 98% of the students in the control class. (..) 

about 90% of tutored students attained level reached by only top 20% of control 

class”



Future: A personalized tutor for each student in the classroom 



LLM Models versus AI ChatBots versus AI educational platforms

Retrieval-Augmented Generation (RAG)



What do specialized GenAI educational tools do?



An example 
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Examples of using 
ChatGPT for tutoring 

students



A tutor to find your mistakes
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Help a student with English
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Make the teacher’s job easier with homework questions
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A different way to interact with history
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Someone to talk with about poetry
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Naturally, there 
are many 
concerns..
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LLMs are not 
always correct

But we are not always right 
either.. 

Checking for errors helps develop 
critical thinking 



Hallucinations
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Ethical concerns

30

LLMs are not always 
fair 

Biased training data 
lead to biased results



Bias and unfairness
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“A professor studying, warm lighting” 

“A professor studying, studio lighting” “A professor studying, low key lighting” 



Ethical concerns
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Students can simply 
cheat

True – but that can be addressed 
through  better assessment.

Do not focus on final answer but on 
ability to reason/create.



Psychological concerns
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Teachers feeling left out?
Students feeling 

attachment to AI?

No! 
We have natural tendency to 

emphasize human interaction even 
when it is technology mediated
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But the ultimate 
question is:

Does GenAI
actually promote 

learning?



An evaluation of GenAI’s impact on the learning outcome



Study setup 

● About 1000 students in three highschool grades (in Turkey – the study was 

designed/funded in the US)

● Focus only on math courses

● Randomized control study – compare three groups:

○ No GPT: no access to GenAI

○ GPT Base: access to ChatGPT interface (can simply ask for solution)

○ GPT Tutor: no hallucinations, does not give away right answer, provides feedback 

to student

● Study session consists of three steps:

○ Teacher covers a certain topic – explains concepts

○ Practice session: students are asked to solve several relevant problems

○ Exam session: solve problems without the use of any GenAI tool (supervised)



Main results

● During practice session:

○ Students in ”GPT Base” group: 48% better than “No GPT” group

○ Students in “GPT Tutor” group: 127% better than “No GPT” group

● During exam session:

○ Students in ”GPT Base” group: 17% worse than “No GPT” group

○ Students in “GPT Tutor” group: no significant effect compared to “No 

GPT” group

● Explanation provided:

○ Students may be using GPT as a “crutch” while practicing, not really 

learning more in the process



Closing remarks

● Anything that can be done well by AI will be increasingly viewed as mundane –
not worth our time (or money..)

● Our children will thrive if they can excel in what AI cannot do well:

1. Analytical thinking
2. Creative thinking
3. Resilience
4. Flexibility
5. Agility
6. Motivation
7. Self-awareness
8. Curiosity
9. Lifelong learning



Check out our Horizon Europe project: GenAI4ED
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